# BOLETÍN #26



¿Cuáles son los alimentos que pueden marcar la diferencia en la alimentación inicial de los camarones?

César Molina-Poveda Cristhian San Andrés, Manuel Espinoza-Ortega



En la edición anterior compartimos diversos ensayos comparativos entre los alimentos micro-extruidos frente a los micro-pellets y a los granulados. En esta edición mostraremos la **valoración de campo realizada** y sus **conclusiones.** 

## 3. Valoración en campo

Para esta evaluación llevada a cabo durante la estación invernal del 2020 (mayo a diciembre), se seleccionaron 39 pre-crías de fondo de tierra con una extensión en el rango de 1,45 a 1,68 hectáreas ubicadas en la provincia del Guayas.

Estas pre-crías fueron alimentadas con tres alimentos iniciadores fabricados con diferentes procesos y en diferentes tamaños:

| Micro-extruidos    | 0,8 mm; 42% de proteína<br>1,0 mm; 42% de proteína |
|--------------------|----------------------------------------------------|
| Micro-pelletizados | 0,5 mm; 45% de proteína<br>0,8 mm: 35% de proteína |
| Granulados         | 0,8 mm; 42% de proteína<br>1,0 mm; 42% de proteína |





**El peso inicial** de los animales fue de 0,003-0,004 g.



Los ciclos productivos fueron seleccionados para evaluar el efecto del método de manufactura sobre el crecimiento, supervivencia, rendimiento y conversión alimenticia. Las densidades de siembra más altas se observaron en el tratamiento con micro-extruidos (177 camarones por m²) frente a micro-pellet y granulado (117 y 125 animales por m², respectivamente).



Las alimentaciones se realizaron **3 veces al día al voleo** siguiendo el siguiente esquema:

El alimento **micro-extruido** 0,8 mm se usó desde la siembra hasta aproximadamente 0,29 g, mientras que el formato 1,0mm desde los 0,3 g hasta la transferencia.

El alimento **micro-pellet** 0,5mm fue administrado los cinco primeros días hasta un peso de 0,09 g aproximadamente y desde este punto se distribuyó dieta de 1,0 mm hasta la transferencia.

En cuanto al **granulado**, el esquema de administración fue igual al usado en micro-extruido, es decir 0,8 mm hasta los 0,3 g y posteriormente 1,0 mm hasta transferencia.



El ciclo productivo tuvo una duración más larga para las pre-crías que fueron suministradas con micro-extruidos, siendo menor en 5 y 4 días para aquellas pre-crías alimentadas con micro-pelletizados y granulados, respectivamente.

Esta diferencia en días explica en parte que los camarones alimentados con micro-extruidos mostraron el doble y triple de peso (0,61 g) en la transferencia a la fase de engorde frente a lo encontrado con los otros iniciadores. Al dividir el peso de transferencia por el número de días que duró la fase de pre-cría se encontró la misma tendencia, una mayor tasa de crecimiento en las pre-crías alimentadas con micro-extruido seguidas de aquellas suministradas con micro-pelletizado y granulado, lo que explicaría que indistintamente del número de días que dura cada pre-cría se encontró un mayor efecto del tipo de alimento suministrado.

Los resultados
(Tabla 1) indican que
la alimentación con
micro-extruidos genera
al menos un 50% más
de rendimiento
(71 lbs/ha-día)
en comparación con
micro-pellet y granulado
(30 y 28 lb/ha/día
respectivamente).



|                                         | Micro-extruido | Micro-pellet | Granulado |
|-----------------------------------------|----------------|--------------|-----------|
| Número de pre-crías                     | 16             | 18           | 5         |
| Extensión pre-cría (ha)                 | 1,8            | 3,0          | 1,7       |
| Días                                    | 21             | 16           | 17        |
| Densidad de siembra (camarones/m2)      | 177            | 117          | 125       |
| Cantidad de Pl por g                    | 256            | 300          | 240       |
| Peso Inicial (g)                        | 0,004          | 0,003        | 0,004     |
| Días de cultivo                         | 21             | 16           | 17        |
| Peso final (g)                          | 0,61           | 0,3          | 0,21      |
| Biomasa Transferida (lb/ha)             | 1.482          | 474          | 471       |
| Animales transferidos (camarones/ha)    | 1.226.198      | 683.741      | 998.185   |
| Supervivencia (%)                       | 75             | 61           | 82        |
| FCA                                     | 1,70           | 2,59         | 2.06      |
| Tasa de crecimiento específico (mg/día) | 29,05          | 18,75        | 12,35     |
| Rendimiento (lb/ha-día)                 | 71             | 30           | 28        |

En el caso de la estrategia de alimentación con micro-extruidos la supervivencia fue 14% mayor comparada con micro-pellets, sin embargo, al compararlo con el granulado la supervivencia de este último tratamiento fue 7% mayor, muy probablemente debido al menor número de días que estuvo en la pre-cría.

El haber sembrado a una mayor densidad junto con la segunda mejor supervivencia conllevó a transferir más camarones en las pre-crías que recibieron micro-extruido, un 7% y 23% más respecto al tratamiento con micro-pellet y al alimento granulado, respectivamente.





En cuanto a la eficiencia alimenticia, los alimentos micro-extruidos fueron los de menor conversión, debido muy probablemente a una mayor homogeneidad en el tamaño como se reporta en la figura 6. En términos generales los alimentos iniciadores micro-extruidos no solamente mejoran la velocidad de crecimiento en fase de pre-cría, sino que ayudan a disminuir la dispersión de tallas asegurando que el animal llegue al engorde con una mayor uniformidad de tamaño, mejor nutrido y preparado para sobrellevar el estrés al que será sometido en su transferencia.

Las post-larvas transforman más eficientemente las dietas micro-extruidas mejorando el factor de conversión.



### 4. Conclusión

Los resultados de análisis físicos del alimento sugieren que muy probablemente un mejor aprovechamiento del alimento se deba a una menor pérdida de nutrientes por lixiviación. Aunque no hubiese mucha diferencia en la apariencia física del alimento de diferentes procesos, lo que realmente marca la diferencia a más de su composición nutricional, es la hidroestabilidad. La exposición a corrientes de agua y sistemas de aireación también puede acelerar la desintegración de los gránulos y la consiguiente pérdida de nutrientes en el medio. A esto hay que sumarle que, debido a la naturaleza de cómo se alimentan. los camarones mordisquean el alimento y los ingieren progresivamente, lo que inevitablemente conduce a la lixiviación. Por lo tanto, la adecuada estabilidad al agua mejora la eficiencia del alimento y evita que se desperdicie y contamine el medio de cultivo.

Es así que, la calidad física del alimento iniciador se refiere al tamaño adecuado, la resistencia a la manipulación y la estabilidad en el agua.

En general, la manufactura de pellets grandes seguido por desmoronado o "crumbling" a varios tamaños es un método práctico de procesamiento de alimentos iniciadores. No obstante, el desmoronado tiende a reducir la hidroestabilidad del pellet en el agua y puede retardar el crecimiento del camarón. Estos resultados muestran que usando un apropiado tamaño de alimento producido por extrusión brindan mejor rendimiento y, a su vez, contribuye a una industria acuícola más sostenible.





# El mejor arranque para la etapa inicial

Nature Wellness es la solución nutrición completa y mejorada para la etapa inicial, que garantiza un mejor crecimiento durante la fase adulta. Alimento formulado para post-larvas (PL12) hasta juveniles de 4 g.





### Contáctate con tu asesor Skretting de confianza

- Ventas: juan.ayala@skretting.com/0999524696 victor.pinoargote@skretting.com / 0990247246
- Servicio Técnico: maximo.quispe@skretting.com / 0967639666 marita.monserrate@skretting.com / 0980364317